The Weckhuysen group has been active for many years in the design, synthesis, characterization and application of catalytic solids for the conversion of fossil (crude oil & natural gas) and renewable (biomass) feedstock into transportation fuels, chemicals and materials. More recently, research is devoted to the catalytic activation of COand the splitting of water into hydrogen and oxygen.

The group is internationally renowned for the development of in-situ and operando spectroscopy and microscopy for studying catalytic solids under realistic conditions. This approach has provided unique insights into the working and deactivation mechanisms of catalytic processes, as well as in the internal architecture of solid catalysts.

Our goal is to shed detailed new insight into the working principles of catalytic solids while they really work (i.e. high temperatures and pressures, and real-life conditions) and to achieve this we strive to build a “powerful camera” to chemically image heterogeneous catalysts from the level of the reactor down to the level of single atoms and molecules.

Development and use of advanced (operando) spectroscopic methods

Development and use of advanced spectroscopic methods applied to heterogeneous catalysts during preparation and real operation in order to develop structure-activity relationships for catalytic processes. Systems of interest are supported metal and metal oxide catalysts, zeolites as well as metal-organic frameworks. The main emphasis is on space- and time-resolved UV-Vis, Raman, IR, and fluorescence spectroscopy as well as X-ray absorption spectroscopy and diffraction methods. Catalytic reactions under study are methane and light alkanes activation, Fischer-Tropsch synthesis, fluid catalytic cracking, methanol-to-olefins, automotive catalysis as well as selective oxidation, biomass-derived oxygenates hydrogenation/hydrodeoxygenation and olefin polymerization reactions.

Molecular movies

Catalytic conversion of biomass, waste and CO2

Catalytic conversion of biomass to transportation fuels and bulk chemicals, more specifically the valorization of polyols, e.g. glycerol and sugars, via telomerization, hydrogenolysis and etherification, valorization of lignin and humins and related model compounds and the conversion of C5– and C6-sugars, including the selective hydrogenation of sugar-derived compounds, such as levulinic acid. This also includes the use of spectroscopy for monitoring biomass conversion processes in the liquid phase (i.e., water at relatively high temperatures and pressures), including issues as catalyst stability.

Towards circular economy

Molecular design of materials for catalysis, adsorption and  separation

Synthesis and characterization of ordered porous materials with catalytic potential. We focus on the fundamental understanding of assembly processes of porous oxides, the development of spectroscopic tools to evaluate the synthesis parameters and the structural aspects of porous materials, including intergrowth structures, spatiotemporal zoning of elements, such as aluminum, and the processes of dealumination and desilication. The materials focus is on molecular sieves, including zeolites and metal-organic frameworks.

We study the molecular design of transition metal ion complexes in inorganic hosts for catalysis and adsorption. Enzymes, the most effective catalysts in nature, are the inspiration source for this research. Catalytic reactions of interest are NO decomposition, methane activation and selective oxidation reactions. More recently this also involves photo-catalytic applications, including solar fuels generation, including the construction of thin films, which could separate and adsorb light molecules, such as CO2, and activate them with light or renewable electricity, harvested from wind or solar panels.

Operando characterization of materials